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Abstract-The nature of the drop growth process during dropwise condensation, as revealed by high 
magnification tine films 116-18, 291. is used as the basis of a simplified model of the sequence of events 
occurring during the growth cycle (i.e. the time interval between successive sweepings of the region of 
the surface under consideration). The model is used to uredict the averaee distribution of dron sizes. 
The theoretical distribution is cbmpared with measurements [8. 311, a recent 

and an earlier empirical distribution [28]. 

NOMENCLATURE Greek letters 

computer simulatibn [32] 

A(r), distribution function; 

a, radius of circles in uniform array (see 
Fig. 3); 

f, fraction of available area covered by a 
generation of drops ; 

N(r), distribution function; 7, time interval between cycles of genera- 

a, fraction of total area covered by all drops 
having radii greater than r ; 

YT Pi + Jri when generation i + 1 has radius 

?i+l; 

AT, r, - rl; 

49 

m, 
P? 
49 
rr 
pi9 

r “3 

rh 

S, 

& 

t, 

v, 

number of drops ofgeneration i per area ; tion 0; 
largest integer for which y” > r/P, ; $, defined in equation (20). 
defined in equation (17) ; 
defined in equation (18) ; 

Subscripts+ 1,2.. . i denote particular genera- 

radius : 
tions of drops. 

maximum radius of drops of genera- 1. INTRODUCTION 

tion i; SINCE Schmidt et al. [l] reported their discovery 
upper radius of range ; of a second “ideal” mode of condensation, i.e. 
lower radius of range; dropwise condensation, and the fact that, for 
volume of a drop divided by cube of the steam, the vapour-side heat-transfer coefficient 
base radius ; was much higher than that for the filmwise 
distance between centres of neighbour- mode, considerable effort has been directed 
ing circles in uniform array (see Fig. 3); toward understanding the mechanism of drop 
time ; wise condensation. Only relatively recently, 
total volume condensation rate per area. however, have many of the apparent discrep- 
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ancies between the experimental results of 
different workers, and conflicting opinions re- 
garding various aspects of the mechanism, been 
settled. 

There is now considerable evidence to sup 
port the following : 

(a) When the effects of non-condensing gas are 
eliminated,* the vapour-side coefficient for both 
steam [2-91 and mercury [lo] increases with 
heat flux and is not strongly dependent on 
vapour velocity [6, 8, 111. 
(b) Promoter used and surface roughness have 
small but measurable effect on the vapour-side 
coefficient [3-5,8-j. 
(c) Surface inclination has relatively small effect 
on the vapour-side coefficient except for large 
deviations from the vertical [2, 12-141. 
(d) Condensation on newly exposed areas is in 
the form of minute drops and condensate films 
greater than monomolecular thickness are not 
present [15-181. 

While progress has been made in recent years 
towards understanding the mechanism of drop- 
wise condensation, there still remain areas of 
uncertainty. The problem is complicated by 
the existence on the condensing surface of a very 
wide range of drop sizes, extending from the 
“primary” drops (those which form at nuclea- 
tion sites and grow by condensation) to the 
largest which can remain on the surface, the 
latter drops being several orders of magnitude 
larger than the former. Several factors are in- 
volved in the mechanism of heat transfer during 
dropwise condensation, their relative signific- 
ance depending on the drop size. Thus for the 
smallest drops the effect of surface curvature on 
the saturation temperature and pressure is of 
major importance while for larger drops con- 
duction is the dominating factor. Since the 
condensation rate on small drops of near-to- 
optimum size can be very large (much larger 
than that averaged over the whole condensing 

* Minute traces of non-condensing gases such as remain 
after prolonged boiling have a significant effect on the 
steam-side coefficient [4]. 

surface), the resistance associated with inter- 
phase matter transfer [19] plays an important 
role in the case of these drops. In addition, a 
further resistance, associated with non-uni- 
formities of heat flux in the material of the 
condenser wall near to the condensing surface, 
has been proposed [20]. Recent work on yet 
another factor of possible importance, i.e. that 
of thermocapillary convection within the drops 
[21], suggests that this effect is of minor signific- 
ance. 

While considerable progress has been made 
on the problem of calculating the heat transfer 
through a single drop of given size, the problem 
of the distribution of drop sizes is less well 
understood. In attempting to calculate the 
average heat-transfer rate, different workers 
have dealt with the problem of the drop size 
distribution in a variety of ways. Fatica and 
Katz [22] and Sugawara and Michiyoshi 1231 
assumed that on a given area all drops have the 
same size, are uniformly spaced and grow by 
condensation at their surfaces. Wenzel [24] 
assumed that drops grow in uniform square 
array and that coalescences occur between four 
neighbouring drops to form a larger drop in a 
new uniform square array. Gose, Mucciardi and 
Baer [25] and more recently, Tanasawa and 
Tachibana [26] have attempted partially to 
model the drop growth and coalescence process 
by computer. The major problem here was the 
large time requirement to model the process 
adequately. (This is illustrated by reports of 
nucleation site density 2 x lo6 sites/mm2 [8] 
and that about 400000 coalescences may be 
involved in the formation of a single drop of 
radius about 1 mm [27].) Le Fevre and Rose [28] 
assumed a form for the distribution function 
which had the correct behaviour for the limiting 

cases of very large and very small drops. 
All of the above treatments are either incom- 

plete or at variance with the evidence provided 
by the high magnification tine films of West- 
water and co-workers [16-18, 291. This photo- 
graphic evidence forms the basis of the present 
model of drop growth and coalescence. 
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Aphotopphofdropwk- @allevellical~mveringaregi~~: 
mining sevd of the largest sixe drops but 
exchlding falling drop& shows that tbe largest 
dropsareallmuchthesamesizeandaremore 
orlessunSormlyspaced-Otherdropsalecon- 
siderablysmaller_Anenhngedphotograf3hofa 
regjon between the largest drops (covering as 
lar~NliUC%%itSpOSSibkWithOldid~the 

largest drop) appears vhually identical to the 
former picture; ie the largest drops on the 
photogqhareappfoximat&uf&rminsi7s 
and spacing other drops being a good deal 
deCTheSamektl-WZ3@llOftlKXgiOU 

bl?tw~thelar~dropSontheabOvepidwe, 

dSOOLL 

Altematively~ one may follow the sequencle of 
events on a region of the condensing surface bri 
tweeu successive sweepings Primary drops are 
first formed at nudeation sites These grow by 
condensation until Wee occurs between 
neighbours The coalesced drops continue to 
grow and new ones to form and grow at sites 
exposed through coalesceuce As the process 
corltuul~ coalescences occur between drops of 
various sixes while the size of the largest drops 
present continues to increase A situation is soon 
reached where the largest drops present appear 
more or less uuifonn in sixe and spacing This 
situation persists as these largest drops grow 
and their number per area decreases until they 
reach a size at which the region is agaiu swept. 
Of course, we cannot obtain a picture of suffici- 
ent size and resolution to follow the process 
through the entire cycle. What one iu fact sees, 
wheu observing a small region under a micro- 
scope, is that the largest drops, by growing and 
in turn coalescing with neighbours hecome 
more widely spaced and pass out of the Geld of 
view_+ When this occurs a second geueration of 
‘%rgest” drops apparently indistinguishable 

* OccasionaUy ooe of the largest drops obscures the 
wbde field for a time. 

fWltkC%diU~~~~be~ 
Tbeseagaingrowandplassoutofthe6ieldof 
viewtobehllowedbyathirdgentxationand 
soonunrilaf4ingdropsweepstheentirefield 
andtheproussl-eskuk 

TheimportantfeatmBoftheahedescrip 
tion of the condemation process are: 

the existence of distinct ~generationsn of 

drops. 
thefactthattbedropsofanygenerationare 
moreorlessuniformiusi7eandspa&g. 
thedensityofpackingofagivengenemtion 
on the available area (area not covered by 
larger drops), is apparently independent of 
thesizeofthedropsandthesameforaIl 
gtXJtDtiOll% 

The explanation of the lkatures described 
above lies prharily in the t3ct that, apart fkom 
thosedropswhicharesosmallthattheefkzct 
of interface curvature is significant the time 
rate of increase in radius becomes smaller as the 
radius iucreases For growth by direct condensa- 
tion this cut be seen from equation (14) of [28]_ 
For growth by coalesceuce with other drops, we 
might expect the rate at which a drop increased 
its volume by capturing neighbours to be a 
function of its perimeter. lf volume growth rate 
of a drop were proportional to its perimeter, 
then the rate of iucrease in its radius would vary 
inversely as the radius. The fact that the smaller 
drops of a generation grow more rapidly than 
the larger ones, tends to preserve uniformity of 
Size. 

Where drops Of a given generation chance to 
be more closely packed, coalescence between 
neighbours tends to increase the spacing Where 
drops of a given generation chance to be more 
widely spaced, fewer coalescences occur as these 
drops grow and consequently they become more 
closely packed_ Occasionally, iu a sparsely 
populated (by a given generation) region, the 
more rapid growth and coalescence of smaller 
drops (not of the generation under considera- 
tion) might provide a new member of the 
generation. Each of the abovementioned fat 
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tors contributes towards a tendency to preserve 
uniformity of spacing. 

3. THE PRESENT MODEL 

A complete growth cycle is the time between 
successive sweepings of the region under con- 
sideration. Let us consider a somewhat idealized 
picture of the sequence of events during this 
time interval. The initial generation nucleates, 
the drops of this generation proceed to grow in 
size, while their number decreases through 
coalescences, until the region is reswept. The 
growth of the initial generation is illustrated in 
Fig. 1. The “typical” radius (drops of a real 
generation vary somewhat in size) at any instant 
is r0 and its maximum value, i.e. at the end of the 
growth cycle of period r, is 3,. In Fig. 1, the 

.________--------_ 

I 

/ 

6 

FIG 1, Typical growth cycles for the first three generations 
of drops. 

variation of r0 with time is shown as a straight 
line through the origin. Real drops do not start 
with zero radius and some time may elapse, 
following sweeping, before the initial generation 

is formed. Furthermore there is at this stage no 
reason to suppose that r,, should vary linearly 
with time. These matters are not relevant to the 
discussion at this stage, though it may be 
pointed out here that linear growth of r. does 
not imply that the radii of individual drops 
increase linearly, since the number of drops in 
the generation also varies with time. 

During the growth of the generation, the 
balance between growth of individual drops 
and decrease in their numbers through coalesc- 
ences, leads to a constant “size-to-spacing” ratio, 
i.e. as the drops grow larger they become pro- 
portionally more widely spaced. (This may be 
seen by enlarging a photograph, taken at an 
early stage in the growth of a generation, so that 
the typical radius is the same size as that 
in a photograph taken at a later stage. The two 
pictures are virtually indistinguishable.) 

After some time interval from the start of the 
growth cycle, the next generation nucleates and 
commences to grow (in the space between the 
drops of the initial generation) in the same 
manner as its predecessor, i.e. the typical radius 
r, follows a path parallel to that of ro. As time 
proceeds the ratio r,/r, increases and conse- 
quently the ratio of the mean spacing of genera- 
tion 1 to that of generation 0 increases. Thus 
drops of generation 1 are progressively captured 
by (i.e. coalesce with) drops of generation 0, until 
finally no drops of generation 1 remain. At this 
time another set of generation 1 drops is born 
and, by spreading, again feeds the drops of 
generation 0 until it again is entirely lost in the 
initial generation. Generation 1 disappears for 
the second time when the ratio of its spacing to 
that of generation 0, is the same as that at the 
end of the previous growth cycle of generation 1, 
i.e. at the same value ofr,/r,. Thus the peak values 
of r1 lie along the straight line ii. Three typical 
cycles of generation 1 are shown in Fig. 1. 

In a similar manner, drops of generation 2, 
having a radius at any instant r2, grow in the 
space between the drops of generation 1 and are 
captured by the latter. In Fig. 1, three typical 
growth cycles of generation 2 are shown in one of 
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the cycles of generation 1. Similarly, generation 3 
forms and grows between drops of generation 2 
and so on. 

The following points may be noted in the 
above model of drop growth : 

(1) 

(2) 

the fraction of “available area”,fl covered by 
drops of any generation is constant. By 
available area is meant aiea between the 
larger drops of older generations. 
the ratio, y, of the maximum radius of any 
generation Pi + i, to the radius ofits immediate 
predecessor, ri, at the instant when the former 
(i.e. generation i + 1) reaches its maximum 
value, is constant. 

In order to determine the average distribution 
of drop sizes over a complete cycle (i.e. a growth 
cycle of generation 0), we require values off and 
y as well as growth rate of a generation as 
function of time. 

Determination off 
The stable configuration of a generation (i.e. 

constant ratio between drop radius and mean 
spacing and hence constant f) arises from a 
balance between packing, due to growth of 
individual drops, and spacing, due to coales- 
cence. In the real situation f is not of course 
strictly constant but fluctuates about some mean 
value. 

In order to determine f; a computer pro- 
gramme was devised to model the growth of a 
generation. Starting from an initial configura- 
tion of non-overlapping circles in a plane, the 
radii of these circles were increased one by one, 
such that the smaller the radius, the greater its 
fractional increase. Various starting conligura- 
tions and growth-rate functions were used. 

After the radius of each circle was increased, a 
check was made for “coalescence”. If the en- 
larged circle overlapped another circle, its radius 
was first set to the value at which the two circles 
just touched; the two were then coalesced, i.e. a 
single larger circle replacing the two former ones. 
For ‘this purpose the circles were treated as 
representing drops which were segments of 

spheres (hemispheres or smaller), the volume 
of the new drop being set equal to the sum of 
the volumes of drops before coalescence and the 
position of the new drop being set at the centre 
of mass of the former pair. Checks for subsidiary 
coalescence were then made to determine 
whether, as a result of the coalescence, the new 
larger drop overlapped others. If this was the 
case, further coalescences were made in the 
manner described above except that in this case 
the radius was not set to the value at which the 
circles just touched before carrying out the 
coalescence. Again checks for further subsidiary 
coalescences were made until the remaining 
circle overlapped no others. The radius of the 
next circle was then increased and the process 
repeated. 

In calculating the total area covered by all of 
the circles at any time, checks were made to 
determine whether or not each circle lay wholly 
in the field (i.e. the circular region containing the 
centres of all of the circles of the initial conligura- 
tion). Where circles lay partly outside the field, 
only that portion inside was used to determine 
J the total area covered by all of the circles 
divided by the area of the field. 

Three starting configurations were used : 

(1) 200 randomly spaced small circles having 
the same radius. The initial area covered by 
circles was 0.005. 

(2) 200 randomly spaced circles having random 
radii (with maximum-to-minimum radius 
ratio of 1000). The initial area covered by 
circles was 034. 

(3) 361 circles in close-packed (almost touching) 
uniform triangular array. The initial area 
covered by circles was 088. 

In the above the area of the field was unity. In 
(1) the locations were determined by using 
random numbers as were the locations and radii 
in (2). In choosing these parameters to set up 
the initial configuration, circles which overlapped 
previously chosen circles were discarded. 

Three different growth functions or size 
increments were used, corresponding to rates of 
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increase in radius proportional to radius to the 
powers:-05,-laud-2 

It was found that whatever starting configura- 
tion or growth function was us6&, as the process 
progresseq the configuration evolves into that 
exhibited by the real generations of drops as 
seeu in the films of Westwater et uZ_ [16-l& 29]_ 
Thuqasthermmberofcirclesbfxomessmaller, 
their radii and spacing become uniform_ After 
the initial transient period, the value off 
“settles down” to a value close to 055, occa- 
sionally falling as low as 048 when several 
“drops”’ are involved in a multiple wee 
or when several coalescences occur in close 
succession, and occasionally rising to about 062 
when the circles chance to bc more uniformly 
spaced and can grow appreciably without 
coalescing The number of circles remaining 
whenfreached its “‘steady”’ value was about 40 
when using starting aviation (1) and about 
70 when using starting caption (2) When 
using starting cordlguration (3), f was equal to 
051 after a single “‘round’” of radius increases 
and the number of circles remaining was 64. For 
any starting configuration, when a few drops 
only remained the flu~~tio~ in f tended to be 
more violent but around the same mean so that 
an average of the results from the later stages of 
several runs was close to 055. 

Figure 2 shows the appearance during the later 
stages of the simulated growtb of a generation. 
Tbe lower figure shows the situation a short time 
alter that of the upper figure. It can be seen that 
a group of four drops, as well as a pair, have each 
coalesced to form single drops reducing the 
total number from 13 to 9. 

EGtrlier a simpler model had been used to 
provide an estimate for f: The foregoing des- 
cription of the growth of a generation indicates 
that, at any instant, the drops are all of similar 
size and the density of packing is limited by 
coalescence between neighbours It was con- 
sidered that the instantaneous appearance of a 
generation might approximate to that of “maxi- 
mum packing” of circles having equal radii and 
random locations with the restriction that no 

circles overlap. An experimeut was carried out 
by computer to determine the value df for such 
a situation_ The centres of circles having radii 
01 we~~~at~~~a~~~~dof 
radius unity_ Circles were rejected when they 
overlapped previously chosen circles The frac- 
tion of the area of the field covered when no 
further circles could be accommodated gave an 
estimate off: Several runs were carried out giving 
values off in the range 05@56_ 

f-0-56161 

I%. 2. Appcaraoce of later stages in simulated growth of a 
generatiOU. 

Values off were also found by measurement. 
Several frames of the Westwater films selected 
from dilferent stages of the growth cycle (i.e. 
larger or smaller numbers of drops per area) of 
diffwent generations, were projected on to a 
screen and the image traced. By measurement of 
the tracings the following values of f were 
obtained: 051,04&051, @59,057. 

It may thus he concluded tbat the correct 
value of-flies in the range 0-6 and is probably 
close to 055. 
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Detm ofy 
In order to estimate this parameter we 

idealize an actual generation, in which the drops 
have approximately the same size and approxi- 
mately uniform spacing to one in which the 
drops have identical sixes and are uniformly 
spaced ie. their centres form an equilateral 
triangular array. Figure 3a shows three drops of 
such an ideal generation having, at some instant, 
radius a and distance between centres of neigh- 
bouring drops s. At this instant, the maximum 
radius which can be attained by a drop of the 
succeeding generation is equal to the distance 
between its cents and the perimeter of the 
nearest drop of the older generation_ The maxi- 
mum radius of a drop whose centre is at P is x 
(see Fig 3a). We estimate the average value of 
the maximum radius which the newer genera- 
tion could attain at the instant depicted in Fig. 
3a as the average value of x given that P has 
equal probability of lying anywhere in the space 

FIG. 3. Determination of y. 

between the drops of the older generation. Thus 
the average value of the maximum attainable 
radius,jz,isgiven by: 

1 
x=- 

X 
xdX 

X 

(1) 

where X is the area between the drops of the 
older generation. Then. referring to Fig 3b 

rj6 s/2rwrO 

I, j (r-u)rdrdO 
a 

- 
x=-ai~2uhhlY 

1 .f rcbdo - 
a 

Evaluating the above we find : 

(2) 

7l (I’ 

+z i o_ 
(3) 

Now for a uniform equilateral triangular array, 
the fractional area covered f is given by : 

(4) 

From equations (3) and (4), we find, for j = 05, 
055 and 06, the corresponding values 0224, 
0 189 and 0158 respectively for y. 

Growth rate of a generation 
The individual drops of a generation grow by : 

(a) direct condensation at their surface, (b) cap 
ture of succeeding generations and (c) coaler 
cences between neighbouring drops of the same 
generation. A detailed analysis would thus be 
extremely involved and would include, through 
(a), all of those factors which are concerned in 
the heat-transfer to and through a single drop 
(see for instance [28]). However, since growth 
by direct condensation is only significant for 
very small drops* we shall proceed more simply 

* This may not he true for a liquid such as mercury with 
high thermal conductivity. 
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and bear in mind the fact that our result may 
not be valid for very small drops. 

Since each generation occupies a constant 
fraction of the totai area irrespective of the stage 
of its development, the area available for the 
later generations of drops, which undergo many 
cycles and only achieve a very small maximum 
radius, remains constant. Since most of the 
condensation takes place on these small drops, 
we might expect that the total condensation rate 
would remain approximately constant with time. 
This conclusion is supported by heat-transfer 
measurements at different heights on vertical 
plates [3,4] and using different surface inclina- 
tions [Z, 12-141. In both cases it has been found 
that for ranges over which the sweeping fre- 
quency varies appreciably,* the heat-transfer 
rate varied by a small or undetectable amount. 

Thus, if we assume that the total volume 
condensation rate per area I/is constant we have : 

V = d E (n,Sr~) = constant 

where the summation is taken over all genera- 
tions. n, is the number of drops per area of 
generation i and S is a shape factor equal to the 
volume of a drop divided by the cube of the 
radius, i.e. S is a constant for similar drops. Now 

thus 

n, = f(l -0 
1 xr: 

(7) 

Since the growth rate depends only on radius, 
i.e. is the same for all generations when at any 
given radius, we have, for any generation: 

2 = 4(r). 

* Sweeping frequency increases: { 1) with distances from 
the top of the surface since a failing drop grows. and hence 
sweeps a diverging path, and (2) with inclination since the 
size at which a drop begins to fail, and its speed of descent, 
depend on the surface inclination. 

Then, for constant V, from equation (7) 

c (1 -fyz= C(1 -.f)‘(p(r) = constanL(8) 

Since equation (8) must hold when different 
generations are at various stages of growth and 
since the relationship between ri and ri + 1 is not 
fixed, the only solution which will hold in 
general is that 4(r) is a constant for all r and i. 
Thus the growth curves would be straight 
parallel lines as shown in Fig. 1. 

4. RISTRIRU~ON OF DROP SIZES 

To determine N,(r)dr, the average number 
of drops per area of generation i in the size 
range r, r + dr, we multiply ni by the fraction of 
the cycle time T which the drops spend in this 
size range, i.e. 

NI(r) dr = R, dti/z. 

Thus for generation 0 : 

(9) 

f 
number of drops per area of radius Y, no = _LZ 

7rr 

fraction of cycle time in size range r, r + dr 

dt, dr 

z PO 
hence : 

N fr)dr =fd’ 0 7rr2 PO 
(r d PO) (10) 

* 
YG -----_- ---- ---_--- 

1 

‘I = Y’b -, /-; 
‘2’. I 

~ xc\\.-Y 
--&__-----_< ’ 

r --f---’ ’ 
; 

/- 
T t 

FIG. 4. Estimation of time spent by generation 1 in size 
range Y, f + dr. 
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Turning now to generation 1, the growth cycles 
shown in Fig. 1 do not have a definite location 
on the time axis. Here we shall assume that all 
locations are equally probable, i.e. for drops of 
generation 1, at any instant, there is equal 
probability that the radius lies between zero 
and its maximum possible value at that instant. 
This will also be assumed for all subsequent 
generations. On this basis, referring to Fig. 4 we 
estimate the fraction of the cycle time Z, spent 
by drops of generation 1 in the size range 
r, r + dr (r < y?,), as the ratio of the area of the 
shaded strip to the total area under 3,, thus: 

2 
=- 

( ! 

,_iLdr 
‘I’ Y e, PC8 

(r < P,) (11) 

and, in general, for generation i (i> 1); 

then, using equations (6) and (9) we have : 

N,(r)& = !I!Lafy2 1 _ !__!_ dy -_ 
7cr2 yi 

i > 
yi PO 3, 

(i 2 1, r 6 ~‘9,). (13) 

Thus, accounting for all generations whose 
maximum attainable radius, yip0 exceeds r we 
obtain the required distribution of drop sizes : 

N(r) dr = N,(r)dr + f N,(r) dr 
i= 1 

(14) 

where m is the largest integer for which y” 2 r/PO 
i.e. m = entier (In(r/P,)/ln y) (higher generations, 
i > m, do not contribute since their maximum 
attainable radius is less than r). Thus: 

N(r)dr=-$[l +2${? 

x (1 -$-)j]$. (15) 

For the purpose of calculating the average heat 
flux the fractional area A(r) dr covered by drops 
in the size range r, r + dr is required. This is 
given immediately by multiplying equation (15) by 
m2 : 

(‘-fy __ 
5 ,i 

x (I - $k)]]dr. (16) 

When integrating equations (15) or (16) to 
obtain precise resuhs for a finite size range, it is 
necessary to distinguish those generations for 
which the upper limit of integration is the upper 
radius of the range and those whose maximum 
attainable radius may be less than the upper 
limit of the range. Thus, in order to calculate the 
number of drops per area having radii between 
upper and Iower bounds respectively of r, and 
rI we have, for generations 0 to p an upper limit 
of integration r, and for generations p + 1 to 4 
and upper limit of yip,, i denoting the generation 
in question, and 

p = entier ~ln(r”/~o)/ln 1)) 

q = entier {ln(r,/P,)/ln y). 

Equation (15) may be written : 

(17) 

(18) 

N(r) dr = $- i + 2 f tl/(i, r) 
0 i=l 

+ 2 i +(i, r) 
I 

$ (19) 
i=p+l 

where 

f&+(1 1-z _ (20) 
Y ( 1 YE PO 

The number of drops per area in the size range 
rI, r, is then given by : 
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evaluating the integrals we have: 

Simihtrfy for the fractionaf area covered by 
drops in the size range r ,_ r, we find : 

For the special case when rl = r and r, = iO, 
equation (23) gives 5 the fractional area 
covered by all drops having radius greater than 
r. in this case p = 4 q = ICI and equation (23) 
becomes : 

.=1(1-;)+2J~{(1_3’ 

i-1 

4 

x L 

( 

.; - ( r2 

2 

_$+-__- _ 

() 2% 
I 

(24) 

Before comparison with measurements can 
bemadeitis ~tou~w~~ 
~tb~~~~~~~~~~a 
generation of drops is a physical reafity% the 
drops of an actual generation at a given instant, 
V~SOfIldKitinsize.htheprpsent~ 

drops of a given geueration, i have identical 
radii_ r+ llm f, coa-responds to an average 
~~Of~~~O~~~~~*~ 
the instant b&ore the region under observation 
is swept_ by a htlling drop PO corresponds to the 
average radius of the oldeat Qie largest) genera- 
tion of drops 

ft is apparent th& ia is smaffer than the 
largest singfe drop immediately prior to sweep- 
ing Moreover in practice the interval between 
successive sweepings of a gjven region varies 
somewhat and hence the maximum siz attained 
by the oldest generation also ffuctuates from 
cycle to cycle. Thus to obtain a proper measure- 
ment of icr it would be rtecesrzq to obtain a 
large number of photographs of the region taken 
at different times (under steady conditions) 
immediately prior to sweeping Such photo- 
graphs c~ufd conveneintiy be obtained by 
extracting the appropriate frames from a ciue- 
film taken over a sufficiently long time interval. 
From each photograph tbe average radius of 
the largest generation could be measured and 
second average taken over ail photographs 

Recently, detailed luring of the distri- 
bution of drop sizes for dropwise condensation 
of steam have been made [I$ 311. Measure- 
ments were made for different vapour-to- 
surface temperature differences [311, pressures 
[8f and surface inclinations [3lJ and in both 
investigatious all drops down to those having 
radii of about 5 pm were counted_ Since these 
authors do not comment on the “generations” 
of drop growth they, not surprisingly, give no 
diect information from which PO can be found. 
Hdwever, it is possible to make rough estimates 
of PO from the measurements given- If the 
number of drops per area in a given size range 
is plotted against the mean radius for the range_ 
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one might expect a fall in numbers of drops and 
a discontinuity when the mean radius reaches a 
value for which the upper radius limit of the 
range exceeds ?* In the ideal ease there are no 
drops having radius exceeding i, while in the 
real case one would anticipate fewer drops with 
radius exceeding i0 than would be found by 
extrapolating from the distribution for smaller 
drops. All of the observed dist~butions [g, 311 
exhibit this behaviour and provide us with a 
means of estimating PO for each set of observa- 
tions. 

For example, Fig 5 shows a typical set of 
observations showing a dis~ntin~ty at a 

I I 

r. pm 

FIG. 5. Data of Graham [S] showing ~ntin~~ at 
r - O-27 mm. (Vertical surface. vapour temperature IOOYL) 

radius of about 027 mm. This figure should 
perhaps be regarded as a lower bound since 
only two points (probably the least reliable) were 
used to construct the part of the curve to the 
right of the discontinuity. The size range used 
for counting was 08 r to 1.2 r, and hence we 

estimate the lower bound for PO to be about 
l-2 x @27 mm ie. about 032 mm, with a less 
definite upper bound of about 04 mm_ All of 
the data of Graham KS] and Tanasawa 1311 
were treated in this way and the estimated 
values of i, are given (rounded to the nearest 
005 mm) in the table below :- 

ri7i& 1 

Author Grabam Igl Tauasawa 1311 
-_- 

Steam tempera- 
ture, “C loo 31 loo loo loo 

steam-t~surface 
temperature 
diirtXce/K 028 tb28 i-o 25 l-3 

Surface inctina- 
tionJde-gree 90 90 90 90 45 

idmm 035 045 035 06 035 
Symbol Fig 6 0 0 0 * x 

The variations in Fe with experimental con- 
ditions are not thought to be sign&ant. It is 
considered more probable that these result 
from minor differences in surface properties 
following cleaning and promoting on separate 
occasions This is supported by heat-transfer 
evidence [4], where measurements made on a 
particular occasion exhibited less scatter than 
found when comparing measurements made on 
separate occasions aher cleaning and re-promo- 
ting. While, on the grounds of dimensional 
analysis [28], one might expect ?0 to increase 
with decreasing temperature as indicated by the 
results of Graham, there is no reason to expect 
that for a vertical surface i,, should be greater 
for a somewhat greater condensation rate. The 
fact that P0 for a surface inclination of 45” was 
not found to be greater than for the vertical 
surface might at first seem surprising However, 
heat-transfer measurements [2 12-141 have 
shown that results are only weakly dependent 
on surface inclination for inclinations to the 
vertical of less than W. 

In Fig. 6, the distribution function N(r) 
(obtained from the measurements by dividing 
the number of drops per area in a given size 



422 J. W. ROSE and L. R. GLICKSMAN 

range by the range) is plotted against the 
geometric mean radius for the range. Those few 
points for which the upper limit of the radius 

range exceeded P, have been omitted. It may be 
seen that the two sets of measurements are in 
good agreement and that no dependence on f, 
can be discerned. 

Included on Fig. 6 is the curve given by 
equation (15) using f = 055, y = 0 189 and 
3, = 045 mm. N(r) was also calculated using 
equation (22) and the size ranges used in the 
measurements. The differences between the 
results using equation (22) and those found from 
equation (15) were much smaller than the 
scatter of the measurements, 

10S- 

Equation(l5)--- 

CL” 

FIG. 6. Comparison of equations (15). (26) and computer 
simulations [32] with measured drop size distributions 
[8,31]. (The symbols representing the measurements are 

identified in Table 1.) 

The equation for the drop size distribution 
used by Le Fevre and Rose [28] : 

a = 1 - (r/P,)’ (25) 

gives : 

dr. (26) 

Equation (26) is also shown in Fig. 6 using 
f, = 045 mm. 

The results of a recent computer simulation 
of Glicksman and Hunt [32] is also included in 
Fig. 6. 

It may be seen that equations (15) and (26) 
are in good agreement* with the measured 
distributions. The distributions found by Glicks- 
man and Hunt, for different nucleation site 
densities merge with these results. Comparison 
of the Glicksman and Hunt distributions with 
the observations indicates that the nucleation 
site densities were, for the conditions under 
which the observations were made, at least 
lOR cm-‘. 

Equation (15) may be safely used to calcutate 
the heat transfer through drops of radius greater 
than about 5 urn. For simplicity in calculations, 
equation (15) can be closely approximated by a 
modified form of the earlier Le Fevre and Rose 
empirical distribution. The modified form is: 

a = 1 - (r/Po)o’382. (27) 

Figure 7(a) shows the effect of P, on the 
distribution predicted by equation (15). The 
curves given are from equation (15) (with 
,f= 0.55, 7 = 0.189) using the smallest and 
largest estimates’ for PO i.e. 0.35 mm and 0.6 mm. 
It may be seen that while the dependence of 
N(r) on i, in this range is not strong, the 
difference between the two curves for radii 
exceeding about 01 mm is greater than the 
scatter of the measurements. 

It was mentioned earlier that while ./’ was 

* The distribution used by Lc Fevrc and Rose. equations 
(25) and (26) has earlier [33] been compared with the observa- 
tions of Graham [8]. The fact that the agreement was less 
satisfactory than is here shown to be the case, was due to 
the fact that the radius of the largest visible drop had been 
used to non-dimensionalize the radius 1341 rather than the 
effective maximum radius P,. 
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r. p’m r, pm 

FIG. 7. The effects of 3, (with J= 0.55, y = 0.189) and 
f(with P,=O.45 mm) on the distribution of drop sizes given 

by equation (15). 

estimated as 055 and thought to be close to the 
value, it was possible that fmight be as low as 
05 or as high as 06. The results obtained from 
equation (15) for the extreme values off (using 
the corresponding values of y and P, = 0.45 mm) 
are shown in Fig. 7(b). It may be seen that 
dependence of N(r) on fin this range is smaller 
than the scatter of the measurements. Thus 
equally good agreement between theory on 
measurement would be obtained for all values 
off in the range 0550.6 (with the appropriate 
values of y). 

6. CONCLUDING REMARKS 

The present description of the growth of a 
generation of drops (i.e. f remains constant as 
the average radius increases with time) does not 
hold for the primary drops which form at 
condensation sites and grow by direct condensa- 
tion. Significant coalescence occurs when the 
average radius of the primary drops becomes 
equal to about half the mean spacing between 
the condensation sites. This value provides an 
absolute lower limit to the range of validity of 
the present model. 

The theoretical distribution of drop sizes 
relates to a particular small region of the 
condensing surface. Since falling drops sweep 
diverging tracks, the lower regions of the 

surface are swept more frequently, and conse- 
quently 3, decreases with distance down the 
surface. (For a plane vertical surface of moderate 
height the frequency of sweeping varies approxi- 
mately as the cube root of plate height [23].) 
In general, to determine the size distribution 
over a relatively large area, it would be neces- 
sary to determine the dependence of 2, on 
location and to integrate for the whole region. 
When considering larger areas it should also be 
noted that the theory does not include falling 
drops. (At the end of the growth cycle, the 
region under consideration is covered by a falling 
drop for a finite time which is ignored in the 
present analysis.) For water the fraction of 
surface area covered by falling drops is, except at 
very high condensation rates, small and may be 
taken account of separately [30]. 

The fact that the theory, which does not 
involve the vapour-to-surface temperature 
difference, vapour pressure and fluid properties 
i.e. the factors affecting the growth rate of 
individual drops, agrees well with measure- 
ments, suggests that, for the range of drop sizes 
covered by the measurements (5 urn radius and 
above), the coupling between the distribution 
of drop sizes and the heat-transfer parameters 
is weak. (For the conditions under which the 
measurements [8] were made the radius of the 
smallest viable drop is about 006 urn.) 

Finally, it should be noted that the values of 
f and y used in the present work are valid only 
for drops which are spherical segments having 
contact angles less than or equal to 7c/2. For 
drops having larger contact angles (e.g. mercury) 
coalescence occurs before the base radii come 
into contact. In the absence of any size distri- 
bution data for drops having contact angles 
significantly in excess of 7112 these cases have 
not been pursued at present. 
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CONDENSATION EN GOUlTE%LA DISTRIBUTION DES TAILLES DES GOUTTES 

R&uu&La nature du processus de croissauce des gouttes durant la condensation r&I& par des films 
cintitographiques aver fort grossissement (16, 18, 29) est p&e pour base d’tm modele simplifik de la 
s&quemze des &mements qui se produisent pendant le cycle de croissance (par exemple, i’iutervalle de 
teznps cntre lea balayages successifs de la r&ion superficielle consid&&). Le mod&e est utilid pour 
estimcz la distribution moyeame de la taille dea gouttes. La distribution thbrique est cornpark aux 
meaura (8,31X B une simulation r6centc par ordioateur (32) et g une distribution empiriquc ant&ieure (28). 
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TROPFENKONDENSATION-VERTEILUNG DER TROPFENGROSSE 

Z- -Die Natur des Wachstumsprozesses bei da Tropfenkondensation, dii in Fihnauf- 
nahmen [ 16,18,29] mit starker Vergr&serung sichtbar gemacht ist, wurdc ak GrundIagc Rtr tin verein- 
fachtes ModeU zum Ablauf der Erciguissc w~iuend eines Wachstumszykhrs (d.h der Zeit zwischen 
aufeinanderfolgendem Tropfenablauf auf der betrachteten Flfrche) herangczogen Das Modefl dicnt rur 
Bestimmung der durchschnittlichcn Tropfengrbssenverteihmg Die thcorctische Verteihmg wurdc mit 
Messergebnissen [X, 311, mit einem neueren RechenmodeU [32] und mit einem friihenm empirischen 

Verteilungsgeseb verglichen [28]. 

fkFtOTaqlm-hfCXaH3iY3M IIpOqeCCa pocTa Kalle.Tb llpll li~lle.7lbHO~ liOll;leHCal~llH, KOTop&j 

MO-XHO IlpOCJle~KTb Ha K3iHOIl.7eHKe llpll UHOrOKpaTHOU J-UC.Tl4’3eHilLl [16, 18, 2’31, .,er n 
OCHOI3y ylIpO~eKHOii M0jle.W IIOCJeJOBaTeJbHbIX fIH~ieHKfi, npO3lcXO#11I(3lX 80 B~CWH I(sh’:la 

poma, ~.e. npore?KyTKa KpeMeKll nncl~~y KOC;Ie;IoKaTe.~b~~blM3i rmm3aU3l ysacTKa paCc- 

uarpanaemoft iiosepxaocra. 3Ta w0;lenb IiCllOJlb:3~eTCfl ;I;IH pawera cpe;rHero pacnpe~e.~el~3~K 

pamepon lia1le.m. ~COpeTllWCK3le XaHHble CpaBHHHalOT~II C peZ3?_.lbT;lTare IlauepeHl~fi 

[8, 311, C peZ3y_lbTaTaMll UO~e314pOBaH3IH 111 I3LlWlC;IIITe.~bHOii MalllllRe [32] II c payee 


