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Abstract— The nature of the drop growth process during dropwise condensation, as revealed by high

magnification cine films [16-18, 29]. is used as the basis of a simplified model of the sequence of events

occurring during the growth cycle (i.e. the time interval between successive sweepings of the region of

the surface under consideration). The model is used to predict the average distribution of drop sizes.

The theoretical distribution is compared with measurements [8. 31]. a recent computer simulation[32]
and an earlier empirical distribution [28].

NOMENCLATURE
A(r), distribution function;

a, radius of circles in uniform array (see
Fig. 3);

f,  fraction of available area covered by a
generation of drops;

N(r), distribution function;

n;, number of drops of generation i per area;

m, largest integer for which y" > r/fy;

p,  defined in equation (17);

g, defined in equation (18);

T, radius;

7, ~maximum radius of drops of genera-
tion i;

ry, upper radius of range;

r, lower radius of range;

S,  volume of a drop divided by cube of the
base radius;

s, distance between centres of neighbour-
ing circles in uniform array (see Fig. 3);

t, time ;

V,  total volume condensation rate per area.

411

Greek letters

o, fraction of total area covered by all drops
having radii greater than r;

y, P, /r; when generation i + 1 has radius
Pits

Ar, r,—r;

7,  time interval between cycles of genera-
tion 0;

Y, defined in equation (20).

Subscripts—0, 1,2. .. i denote particular genera-
tions of drops.

1. INTRODUCTION

SINCE Schmidt et al. [1] reported their discovery
of a second “ideal” mode of condensation, i.e.
dropwise condensation, and the fact that, for
steam, the vapour-side heat-transfer coefficient
was much higher than that for the filmwise
mode, considerable effort has been directed
toward understanding the mechanism of drop-
wise condensation. Only relatively recently,
however, have many of the apparent discrep-
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ancies between the experimental results of
different workers, and conflicting opinions re-
garding various aspects of the mechanism, been
settled.

There is now considerable evidence to sup-
port the following :

(a) When the effects of non-condensing gas are
eliminated,* the vapour-side coeflicient for both
steam [2-9] and mercury [10] increases with
heat flux and is not strongly dependent on
vapour velocity [6, 8, 11].

(b) Promoter used and surface roughness have
small but measurable effect on the vapour-side
coefficient [3-5, 8].

(c) Surface inclination has relatively small effect
on the vapour-side coefficient except for large
deviations from the vertical [2, 12-14].

(d) Condensation on newly exposed areas is in
the form of minute drops and condensate films
greater than monomolecular thickness are not
present [15-18].

While progress has been made in recent years
towards understanding the mechanism of drop-
wise condensation, there still remain areas of
uncertainty. The problem is complicated by
the existence on the condensing surface of a very
wide range of drop sizes, extending from the
“primary” drops (those which form at nuclea-
tion sites and grow by condensation) to the
largest which can remain on the surface, the
latter drops being several orders of magnitude
larger than the former. Several factors are in-
volved in the mechanism of heat transfer during
dropwise condensation, their relative signific-
ance depending on the drop size. Thus for the
smallest drops the effect of surface curvature on
the saturation temperature and pressure is of
major importance while for larger drops con-
duction is the dominating factor. Since the
condensation rate on small drops of near-to-
optimum size can be very large (much larger
than that averaged over the whole condensing

* Minute traces of non-condensing gases such as remain
after prolonged boiling have a significant effect on the
steam-side coefficient [4].
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surface), the resistance associated with inter-
phase matter transfer [19] plays an important
role in the case of these drops. In addition, a
further resistance, associated with non-uni-
formities of heat flux in the material of the
condenser wall near to the condensing surface,
has been proposed [20]. Recent work on yet
another factor of possible importance, i.e. that
of thermocapillary convection within the drops
[21], suggests that this effect is of minor signific-
ance.

While considerable progress has been made
on the problem of calculating the heat transfer
through a single drop of given size, the problem
of the distribution of drop sizes is less well
understood. In attempting to calculate the
average heat-transfer rate, different workers
have dealt with the problem of the drop size
distribution in a variety of ways. Fatica and
Katz [22] and Sugawara and Michiyoshi [23]
assumed that on a given area all drops have the
same size, are uniformly spaced and grow by
condensation at their surfaces. Wenzel [24]
assumed that drops grow in uniform square
array and that coalescences occur between four
neighbouring drops to form a larger drop in a
new uniform square array. Gose, Mucciardi and
Baer [25] and more recently, Tanasawa and
Tachibana [26] have attempted partially to
model the drop growth and coalescence process
by computer. The major problem here was the
large time requirement to model the process
adequately. (This is illustrated by reports of
nucleation site density 2 x 10° sites/mm? [8]
and that about 400000 coalescences may be
involved in the formation of a single drop of
radius about 1 mm [27].) Le Fevre and Rose [ 28]
assumed a form for the distribution function
which had the correct behaviour for the limiting
cases of very large and very small drops.

All of the above treatments are either incom-
plete or at variance with the evidence provided
by the high magnification cine films of West-
water and co-workers [16-18, 29]. This photo-
graphic evidence forms the basis of the present
model of drop growth and coalescence.
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2. DESCRIPTION OF THE CONDENSATION
PROCESS

A photograph of dropwise condensation on a
plane vertical surface, covering a region con-
taining several of the largest size drops but
excluding falling drops, shows that the largest
drops are all much the same size and are more
or less umformly spaced. Other drops are con-
siderably smaller. An enlarged photograph of a
region between the largest drops (covering as
large an area as possible without including the
largest drops) appears virtually identical to the
former picture; ie the largest drops on the
photograph are approximately uniform in size
and spacing, other drops being a good deal
smaller. The same is true again of the region
between the largest drops on the above picture,
and so on.

Alternatively, one may follow the sequence of
events on a region of the condensing surface be-
tween successive sweepings. Primary drops are
first formed at nucleation sites. These grow by
condensation until coalescence occurs between
neighbours. The coalesced drops continue to
grow and new ones to form and grow at sites
exposed through coalescence. As the process
continues, coalescences occur between drops of
various sizes while the size of the largest drops
present continues to increase. A situation is soon
reached where the largest drops present appear
more or less uniform in size and spacing. This
situation persists as these largest drops grow
and their number per area decreases until they
reach a size at which the region is again swept.
Of course, we cannot obtain a picture of suffici-
ent size and resolution to follow the process
through the entire cycle. What one in fact sees,
when observing a small region under a micro-
scope, is that the largest drops, by growing and
in turn coalescing with neighbours become
more widely spaced and pass out of the field of
view.* When this occurs a second generation of
“largest™ drops, apparently indistinguishable

* Occasionally one of the largest drops obscures the
whole field for a time.
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from the earlier generation, may be recognised.
These again grow and pass out of the field of
view to be followed by a third generation and
so on until a falling drop sweeps the entire field
and the process restarts.

The important features of the above descrip-
tion of the condensation process are:

(a) the existence of distinct “‘generations™ of
drops.

(b) the fact that the drops of any generation are
more or less uniform in size and spacing.

(c) the density of packing of a given generation
on the available area (area not covered by
larger drops), s apparently independent of
the size of the drops and the same for all
generations.

The explanation of the features described
above lies primarily in the fact that, apart from
those drops which are so small that the effect
of interface curvature is significant, the time
rate of increase in radius becomes smaller as the
radius increases. For growth by direct condensa-
tion this can be seen from equation (14) of [28].
For growth by coalescence with other drops, we
might expect the rate at which a drop mmcreased
its volume by capturing neighbours to be a
function of its perimeter. If volume growth rate
of a drop were proportional to its perimeter,
then the rate of increase in its radius would vary
inversely as the radius. The fact that the smaller
drops of a generation grow more rapidly than
the larger ones, tends to preserve uniformity of
size.

Where drops of a given generation chance to
be more closely packed, coalescence between
neighbours tends to increase the spacing. Where
drops of a given generation chance to be more
widely spaced, fewer coalescences occur as these
drops grow and consequently they become more
closely packed. Occasionally, in a sparsely
populated (by a given generation) region, the
more rapid growth and coalescence of smaller
drops (not of the generation under considera-
tion) might provide a new member of the
generation. Each of the above-mentioned fac-
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tors contributes towards a tendency to preserve
uniformity of spacing.

3. THE PRESENT MODEL

A complete growth cycle is the time between
successive sweepings of the region under con-
sideration. Let us consider a somewhat idealized
picture of the sequence of events during this
time interval. The initial generation nucleates,
the drops of this generation proceed to grow in
size, while their number decreases through
coalescences, until the region is reswept. The
growth of the initial generation is illustrated in
Fig. 1. The “typical” radius (drops of a real
generation vary somewhat in size) at any instant
is ry and its maximum value, i.e. at the end of the
growth cycle of period 1, is ?,. In Fig. 1, the

7’

FiG. 1. Typical growth cycles for the first three generations
of drops.

variation of ry, with time is shown as a straight
line through the origin. Real drops do not start
with zero radius and some time may elapse,
following sweeping, before the initial generation
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is formed. Furthermore there is at this stage no
reason to suppose that r; should vary linearly
with time. These matters are not relevant to the
discussion at this stage, though it may be
pointed out here that linear growth of r, does
not imply that the radii of individual drops
increase linearly, since the number of drops in
the generation also varies with time.

During the growth of the generation, the
balance between growth of individual drops
and decrease in their numbers through coalesc-
ences, leads to a constant “size-to-spacing” ratio,
i.e. as the drops grow larger they become pro-
portionally more widely spaced. (This may be
seen by enlarging a photograph, taken at an
early stage in the growth of a generation, so that
the typical radius is the same size as that
in a photograph taken at a later stage. The two
pictures are virtually indistinguishable.)

After some time interval from the start of the
growth cycle, the next generation nucleates and
commences to grow (in the space between the
drops of the initial generation) in the same
manner as its predecessor, i.e. the typical radius
r, follows a path parallel to that of r,. As time
proceeds the ratio r,/r, increases and conse-
quently the ratio of the mean spacing of genera-
tion 1 to that of generation O increases. Thus
drops of generation 1 are progressively captured
by (i.e. coalesce with) drops of generation 0, until
finally no drops of generation 1 remain. At this
time another set of generation 1 drops is born
and, by spreading, again feeds the drops of
generation 0 until it again is entirely lost in the
initial generation. Generation 1 disappears for
the second time when the ratio of its spacing to
that of generation 0, is the same as that at the
end of the previous growth cycle of generation 1,
i.e. at the same value of r, /r,,. Thus the peak values
of r, lie along the straight line #,. Three typical
cycles of generation 1 are shown in Fig. 1.

In a similar manner, drops of generation 2,
having a radius at any instant r,, grow in the
space between the drops of generation 1 and are
captured by the latter. In Fig. 1, three typical
growth cycles of generation 2 are shown in one of
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the cycles of generation 1, Similarly, generation 3
forms and grows between drops of generation 2
and so on.

The following points may be noted in the
above model of drop growth:

(1) the fraction of “‘available area”, f, covered by
drops of any generation is constant. By
available area is meant afea between the
larger drops of older generations.

(2) the ratio, 7, of the maximum radius of any
generation #; , |, to theradius of its immediate
predecessor, r;, at the instant when the former
(i.e. generation i + 1) reaches its maximum
value, is constant.

In order to determine the average distribution
of drop sizes over a complete cycle (i.e. a growth
cycle of generation 0), we require values of f and
y as well as growth rate of a generation as
function of time.

Determination of f

The stable configuration of a generation (i.e.
constant ratio between drop radius and mean
spacing and hence constant f) arises from a
balance between packing, due to growth of
individual drops, and spacing, due to coales-
cence. In the real situation f is not of course
strictly constant but fluctuates about some mean
value.

In order to determine f, a computer pro-
gramme was devised to model the growth of a
generation. Starting from an initial configura-
tion of non-overlapping circles in a plane, the
radii of these circles were increased one by one,
such that the smaller the radius, the greater its
fractional increase. Various starting configura-
tions and growth-rate functions were used.

After the radius of each circle was increased, a
check was made for “coalescence”. If the en-
larged circle overlapped another circle, its radius
was first set to the value at which the two circles
just touched ; the two were then coalesced, i.c. a
single larger circle replacing the two former ones.
For ‘this purpose the circles were treated as
representing drops which were segments of
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spheres (hemispheres or smaller), the volume
of the new drop being set equal to the sum of
the volumes of drops before coalescence and the
position of the new drop being set at the centre
of mass of the former pair. Checks for subsidiary
coalescence- were then made to determine
whether, as a result of the coalescence, the new
larger drop overlapped others. If this was the
case, further coalescences were made in the
manner described above except that in this case
the radius was not set to the value at which the
circles just touched before carrying out the
coalescence. Again checks for further subsidiary
coalescences were made until the remaining
circle overlapped no others. The radius of the
next circle was then increased and the process
repeated.

In calculating the total area covered by all of
the circles at any time, checks were made to
determine whether or not each circle lay wholly
in the field (i.e. the circular region containing the
centres of all of the circles of the initial configura-
tion). Where circles lay partly outside the field,
only that portion inside was used to determine
f, the total area covered by all of the circles
divided by the area of the field.

Three starting configurations were used :

(1) 200 randomly spaced small circles having
the same radius. The initial area covered by
circles was 0-005.

(2) 200 randomly spaced circles having random
radii (with maximum-to-minimum radius
ratio of 1000). The initial area covered by
circles was 0-34.

(3) 361 circles in close-packed (almost touching)
uniform triangular array. The initial area
covered by circles was (-88.

In the above the area of the field was unity. In
(1) the locations were determined by using
random numbers as were the locations and radii
in (2). In choosing these parameters to set up
theinitial configuration, circles which overlapped
previously chosen circles were discarded.

Three different growth functions or size
increments were used, corresponding to rates of
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increase in radius proportional to radius to the
powers: — 05, — 1 and — 2.

It was found that whatever starting configura-
tion or growth function was used, as the process
progresses, the configuration evolves into that
exhibited by the real generations of drops as
scen in the films of Westwater er al [16-18, 29].
Thus, as the number of circles becomes smaller,
their radii and spacing become uniform. After
the initial transient period, the value of f
“settles down™ to a value close to 0-55, occa-
sionally falling as low as 0-48 when several
“drops™ are involved in a multiple coalescence
or when several coalescences occur i close
succession, and occasionally rising to about (-62
when the circles chance to be more uniformly
spaced and can grow appreciably without
coalescing The number of circles remaining
when freached its “steady™ value was about 40
when using starting configuration (1) and about
70 when using starting configuration (2). When
using starting configuration (3), f was equal to
0-51 after a single “round” of radius increases
and the number of circles remaining was 64. For
any starting configuration, when a few drops
only remained, the fluctuations in f tended to be
more violent but around the same mean, so that
an average of the results from the later stages of
several runs was close to (-55.

Figure 2 shows the appearance during the later
stages of the simulated growth of a generation.
The lower figure shows the situation a short time
after that of the upper figure. It can be seen that
a group of four drops, as well as a pair, have each
coalesced to form single drops reducing the
total number from 13 to 9.

Earlier a simpler model had been used to
provide an estimate for £ The foregoing des-
cription of the growth of a generation indicates
that, at any instant, the drops are all of similar
size and the density of packing is limited by
coalescence between neighbours. It was con-
sidered that the instantaneous appearance of a
generation might approximate to that of “maxi-
mum packing” of circles having equal radii and
random locations with the restriction that no
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circles overlap. An experiment was carried out
by computer to determine the value of f for such
a situation. The centres of circles having radii
01 were chosen at random in a circular field of
radius unity. Circles were rejected when they
overlapped previously chosen circles. The frac-
tion of the area of the field covered when no
further circles could be accommodated gave an
estimate of f. Several runs were carried out giving
values of f in the range 0-5-0-56.

F1G. 2. Appearance of later stages in simulated growth of a
generation.

Values of f were also found by measurement.
Several frames of the Westwater films, selected
from different stages of the growth cycle (ie.
larger or smaller numbers of drops per area) of
different generations, were projected on to a
screen and the image traced. By measurement of
the tracings the following values of f were
obtained: 0-51, 048, 0-51, 0:59, 0-57.

It may thus be concluded that the correct
value of flies in the range (-5-0-6 and is probably
close to 0-55.
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Determination of y

In order to estimate this parameter we
idealize an actual generation, in which the drops
have approximately the same size and approxi-
mately uniform spacing, to one in which the
drops have identical sizes and are uniformly
spaced ie. their centres form an equilateral
triangular array. Figure 3a shows three drops of
such an ideal generation having, at some instant,
radius a and distance between centres of neigh-
bouring drops s. At this instant, the maximum
radius which can be attained by a drop of the
succeeding generation is equal to the distance
between its centre and the perimeter of the
nearest drop of the older generation. The maxi-
mum radius of a drop whose centre is at P is x
(see Fig. 3a). We estimate the average value of
the maximum radius which the newer genera-
tion could attain at the instant depicted in Fig.
3a as the average value of x given that P has
equal probability of lying anywhere in the space

(a)

{b) A 8

Fi1G. 3. Determination of y.
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between the drops of the older generation. Thus
the average value of the maximum attainable
radius, X, is given by:

x= %ﬂ- xdX M
X

where X is the area between the drops of the
older generation. Then. referring to Fig 3b

X6 20058
f | (—ardrao
0 a
X = x6 s/ 2c0 0 - (2)
j' f rdrdé
1] a
Evaluating the above we find :

L(1+11,,3)__1(9)+1(9)’
x 24\3 4 8/3\s/ " 36\s
V:;= 1 fa n fa) ’
8\/—3(§)‘5(§)
3)

Now for a uniform equilateral triangular array,
the fractional area covered f'is given by :

2 2
)

From equations (3) and (4), we find, for f = 0:5,
0-55 and 06, the corresponding values 0-224,
0-189 and 0-158 respectively for 7.

Growth rate of a generation

The individual drops of a generation grow by:
(a) direct condensation at their surface, (b) cap-
ture of succeeding generations and (c) coales-
cences between neighbouring drops of the same
generation. A detailed analysis would thus be
extremely involved and would include, through
(a), all of those factors which are concerned in
the heat-transfer to and through a single drop
(see for instance [28]). However, since growth
by direct condensation is only significant for
very small drops* we shall proceed more simply

* This may not be true for a liquid such as mercury with
high thermal conductivity.
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and bear in mind the fact that our result may
not be valid for very small drops.

Since each generation occupies a constant
fraction of the total area irrespective of the stage
of its development, the area available for the
later generations of drops, which undergo many
cycles and only achieve a very small maximum
radius, remains constant. Since most of the
condensation takes place on these small drops,
we might expect that the total condensation rate
would remain approximately constant with time.
This conclusion is supported by heat-transfer
measurements at different heights on vertical
plates {3, 4] and using different surface inclina-
tions [2, 12-14]. In both cases it has been found
that for ranges over which the sweeping fre-
quency varies appreciably,* the heat-transfer
rate varied by a small or undetectable amount.

Thus, if we assume that the total volume
condensation rate per area Vis constant we have:

)

V= % T (n,Sr?) = constant

where the summation is taken over all genera-
tions. n; is the number of drops per area of
generation i and § is a shape factor equal to the
volume of a drop divided by the cube of the
radius, i.e. S is a constant for similar drops. Now

=Sy
nr;

(©)

thus

Sf d "
=X D - 7
V== T =) )

Since the growth rate depends only on radius,
ie. is the same for all generations when at any

given radius, we have, for any generation:

dr;

T = i)

* Sweeping frequency increases: (1) with distances from
the top of the surface since a falling drop grows. and hence
sweeps a diverging path, and (2) with inclination since the
size at which a drop begins to fall, and its speed of descent,
depend on the surface inclination.

J. W. ROSE and L. R. GLICKSMAN

Then, for constant V, from equation (7)

Z(l —f) %i = Z(1 — f) ¢(r) = constant.(8)

Since equation (8) must hold when different
generations are at various stages of growth and
since the relationship between r; and r; | is not
fixed, the only solution which will hold in
general is that ¢(r) is a constant for all » and i.
Thus the growth curves would be straight
parallel lines as shown in Fig. 1.

4. DISTRIBUTION OF DROP SIZES
To determine N{r}dr, the average number
of drops per area of generation i in the size
range r, r + dr, we multiply n; by the fraction of
the cycle time © which the drops spend in this
size range, i.e.
N,(!‘) d?‘ = ni dtf/’f. (9)
Thus for generation 0:

number of drops per area of radius r, ny = ~—
nr

fraction of cycle time in size range r, r + dr

_dt_dr
T
hence:
f dr
No(rydr = P r < 7). (10)
r
Yo e ,
;l= ¥ S /’;
i ~ 1
e 8 NN
S I
f/ |
T

FiG. 4. Estimation of time spent by generation 1 in size
range r, r + dr.
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Turning now to generation 1, the growth cycles
shown in Fig. 1 do not have a definite location
on the time axis. Here we shall assume that all
locations are equally probable, ie. for drops of
generation 1, at any instant, there is equal
probability that the radius lies between zero
and its maximum possible value at that instant.
This will also be assumed for all subsequent
generations. On this basis, referring to Fig. 4 we
estimate the fraction of the cycle time 1, spent
by drops of generation 1 in the size range
r,r + dr (r < y#,), as the ratio of the area of the
shaded strip to the total area under #,, thus:

(r <yho) (11)

and, in general, for generationi (i= 1);

1r
1 ———|zd
dg; _ 7 f'o)t ’

T 7't

1 r\dr
- =3
V’%)%

then, using equations (6) and (9) we have:

N{r)dr = quﬁi(l - L:{-)c:{f
b 4 fo

i Lr<yr)(2)

’.2 i

Y

(i = 1,r < y'hy). (13)

Thus, accounting for all generations whose
maximum attainable radius, y'#, exceeds r we
obtain the required distribution of drop sizes:

N(r)dr = No(r)dr + 3 N(ndr  (14)
i=1
where m is the largest integer for which y™ > r/#,
i.e.m = entier {In(r/?y)/In y} (higher generations,
i > m, do not contribute since their maximum
attainable radius is less than r). Thus:
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m

N dr = —f« [1 + 22{“ _if)‘
Tl Y

i=1

(15)

For the purpose of calculating the average heat
flux the fractional area A(r) dr covered by drops
in the size range r, r + dr is required. This is
givenimmediately by multiplyingequation (15)by

nr?:

lid

A(r)dr = —f—[l + 22{ (—L:—f—)—
To Y

X (1 - i;)}}dn (16)
Y ro

When integrating equations (15) or (16) to
obtain precise results for a finite size range, it is
necessary to distinguish those generations for
which the upper limit of integration is the upper
radius of the range and those whose maximum
attainable radius may be less than the upper
limit of the range. Thus, in order to calculate the
number of drops per area having radii between
upper and lower bounds respectively of r, and
r; we have, for generations O to p an upper limit
of integration r, and for generations p + 1 to g
and upper limit of y'#,, i denoting the generation
in question, and

p = entier {In{r,/#y)/In y} {an
q = entier {In(r /P,)}/In y}. (18)

Equation (15) may be written:

_f Lo
N{r)dr = ;E-;;{l +2 £Z1 Yli, r)
d d
+2 Y WG r)}r—; (19)
where el
v = L0 (1 - %Q). 20)
¥ 7 o

The number of drops per area in the size range
ry. 1y 1s then given by :
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N() Ar = f{jd’+2jzm"
LIS |
+2 "'(""dr} @1
n i=pti
evaluating the integrals we have:
= 4o
aF \ry r.

1 4

!L'f_" LA W W £
7 I To \1y
-5)
7R o
)
7ro Fy

Similarly for the fractional area covered by
drops in the size range r,, r,, we find

A(r) Ar = L{r —r 2Z(Lgﬁ
ﬁ F
1

s

i=pt

X (293 r.l)]}. 23)

For the special case when r, =r and r, = #;,
equation (23) gives a, the fractional area
covered by all drops having radius greater than
r. In this case p = 0, ¢4 = m and equation (23)
becomes:
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5. COMPARISON WITH MEASUREMENTS

Before comparison with measurements can
be made it is necessary to understand what is
meant by 7, in the real situation. While a
generation of drops is a physical reality, the
drops of an actual generation, at a given instant,
vary somewhat in size. In the present model,
drops of a given generation, i have identical
radii, r. Thus r; corresponds to an average
radius of the actual generation. In particular, at
the instant before the region under observation
is swept, by a falling drop, 7, corresponds to the
average radius of the oldest (Le. largest) genera-
tion of drops.

It is apparent thdt 7, is smaller than the
largest single drop immediately prior to sweep-
ing. Moreover in practice, the interval between
successive sweepings of a given region varies
somewhat and hence the maximum size attained
by the oldest generation also fluctuates from
cycle to cycle. Thus to obtain a proper measure-
ment of 7, it would be necessary to obtain a
large number of photographs of the region, taken
at different times (under steady conditions)
immediately prior to sweeping. Such photo-
graphs could conveneintly be obtained by
extracting the appropriate frames from a ciné-
film taken over a sufficiently long time interval.
From each photograph the average radius of
the largest generation could be measured and
second average taken over all photographs.

Recently, detailed measurements of the distri-
bution of drop sizes for dropwise condensation
of steam have been made [8, 31]. Measure-
ments were made for different vapour-to-
surface temperature differences [31], pressures
[8] and surface inclinations [31] and in both
investigations all drops down to those having
radit of about 5 um were counted. Since these
authors do not comment on the “generations™
of drop growth they, not surprisingly, give no
direct information from which 7y can be found.
However, it is possible to make rough estimates
of #; from the measurements given. If the
number of drops per area in a given size range
is plotted against the mean radius for the range,
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one might expect a fall in numbers of drops and
a discontinuity when the mean radius reaches a
value for which the upper radius limit of the
range exceeds 7. In the ideal case there are no
drops having radius exceeding #,, while in the
real case one would anticipate fewer drops with
radius exceeding £, than would be found by
extrapolating from the distribution for smaller
drops. All of the observed distributions [8, 31]
exhibit this behaviour and provide us with a
means of estimating 7, for each set of observa-
tions.

For example, Fig 5 shows a typical set of
observations showing a discontinuity at a

104} —

103 —4

em-2

102 - —

N,

] | |
10' 102 10
r, pm
Fig. 5. Data of Graham [8] showing discontinuity at
r >~ (-27 mm. (Vertical surface. vapour temperature 100°C.)

radius of about 0-27 mm. This figure should
perhaps be regarded as a lower bound since
only two points (probably the least reliable) were
used to construct the part of the curve to the
right of the discontinuity. The size range used
for counting was 0-8 r to 1-2 r, and hence we
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estimate the lower bound for 7y to be about
1-2 x 027 mm ie. about 0-32 mm, with a less
definite upper bound of about 04 mm. All of
the data of Graham [8] and Tanasawa [31]
were treated in this way and the estimated
values of 7, are given (rounded to the nearest

0-:05 mm) in the table below :—
Table 1
Author Graham [8] Tanasawa [31]

Steam tempera-

ture, °C 100 31 100 100 100
Steam-to-surface

temperature

difference/K 028 028 i-0 20 1-3
Surface inclina-

tion/degree 90 %0 9% 90 45
Fo/mm 035 045 035 06 035
Symbol Fig. 6 (o} 0 [ ] + x

The variations in 7, with experimental con-
ditions are not thought to be significant. It is
considered more probable that these result
from minor differences in surface properties
following cleaning and promoting on separate
occasions. This is supported by heat-transfer
evidence [4], where measurements made on a
particular occaston exhibited less scatter than
found when comparing measurements made on
separate occasions after cleaning and re-promo-
ting. While, on the grounds of dimensional
analysis [28], one might expect #, to increase
with decreasing temperature as indicated by the
results of Graham, there is no reason to expect
that for a vertical surface #, should be greater
for a somewhat greater condensation rate. The
fact that P, for a surface inclination of 45° was
not found to be greater than for the vertical
surface might at first seem surprising. However,
heat-transfer measurements [2, 12-14] have
shown that results are only weakly dependent
on surface inclination for inclinations to the
vertical of less than 60°.

In Fig. 6, the distribution function N{r)
(obtained from the measurements by dividing
the number of drops per area in a given size
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range by the range) is plotted against the
geometric mean radius for the range. Those few
points for which the upper limit of the radius
range exceeded #, have been omitted. It may be
seen that the two sets of measurements are in
good agreement and that no dependence on 7,
can be discerned.

Included on Fig. 6 is the curve given by
equation (15) using f= 055, y = 0189 and
Po = 045 mm. N(r) was also calculated using
equation (22) and the size ranges used in the
measurements. The differences between the
results using equation (22} and those found from
equation (15) were much smaller than the
scatter of the measurements.

Site density
10% TemE
a |08
b 107
o c 108
1
© Ref[32]
" 1O ]
I
X
g
=
2 0% ) —
Equation (26)
L/
/
103 —
) \
Equation (15)—
T §\ |
108 | |
101 02 103
am

F16. 6. Comparison of equations (15). (26) and computer

simulations [32] with measured drop size distributions

[8,31]. (The symbols representing the measurements are
identified in Table 1.)

The equation for the drop size distribution
used by Le Fevre and Rose [28]:

a=1—(r/pe)? (25)

J. W, ROSE and L. R. GLICKSMAN

gives:

1 - %
N dr = —— ({-) dr. (26)
3nritg \Fo

Equation (26) is also shown in Fig. 6 using
Po = 0-45 mm.

The results of a recent computer simulation
of Glicksman and Hunt [32] is also included in
Fig. 6.

It may be seen that equations (15) and (26)
are in good agreement* with the measured
distributions. The distributions found by Glicks-
man and Hunt, for different nucleation site
densities merge with these results. Comparison
of the Glicksman and Hunt distributions with
the observations indicates that the nucleation
site densities were, for the conditions under
which the observations were made, at least
108 cm™ 2,

Equation (15} may be safely used to calculate
the heat transfer through drops of radius greater
than about 5 um. For simplicity in calculations,
equation (15) can be closely approximated by a
modified form of the earlier Le Fevre and Rose
empirical distribution. The modified form is:

?0)0‘382‘

a=1—(r/ (27)

Figure 7(a) shows the effect of 7, on the
distribution predicted by equation (15). The
curves given are from equation (15) (with
S =055 y=0189) using the smallest and
largest estimates'for 7 i.e. 0-:35 mm and 0-6 mm.
It may be seen that while the dependence of
N{ry on f, in this range is not strong, the
difference between the two curves for radii
exceeding about 01 mm is greater than the
scatter of the measurements.

It was mentioned earlier that while f was

* The distribution used by Le¢ Fevre and Rose, equations
(25) and (26) has earlier [33] been compared with the observa-
tions of Graham [8]. The fact that the agreement was less
satisfactory than is here shown to be the case, was due to
the fact that the radius of the largest visible drop huad been
used to non-dimensionalize the radius [34] rather than the
effective maximum radius #,.
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F1G. 7. The effects of #, (with /= 0-55, y = 0-189) and
f(with #,=0-45 mm) on the distribution of drop sizes given
by equation (15).

estimated as (-55 and thought to be close to the
value, it was possible that f might be as low as
0-5 or as high as 0-6. The results obtained from
equation (15) for the extreme values of f (using
the corresponding values of y and #, = 0-45 mm)
are shown in Fig. 7(b). It may be seen that
dependence of N(r) on fin this range is smaller
than the scatter of the measurements. Thus
equally good agreement between theory on
measurement would be obtained for all values
of f in the range 0-5-0-6 (with the appropriate
values of y).

6. CONCLUDING REMARKS

The present description of the growth of a
generation of drops (i.e. f remains constant as
the average radius increases with time) does not
hold for the primary drops which form at
condensation sites and grow by direct condensa-
tion. Significant coalescence occurs when the
average radius of the primary drops becomes
equal to about half the mean spacing between
the condensation sites. This value provides an
absolute lower limit to the range of validity of
the present model.

The theoretical distribution of drop sizes
relates to a particular small region of the
condensing surface. Since falling drops sweep
diverging tracks, the lower regions of the
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surface are swept more frequently, and conse-
quently #, decreases with distance down the
surface. (For a plane vertical surface of moderate
height the frequency of sweeping varies approxi-
mately as the cube root of plate height [23].)
In general, to determine the size distribution
over a relatively large area, it would be neces-
sary to determine the dependence of #, on
location and to integrate for the whole region.
When considering larger areas it should also be
noted that the theory does not include falling
drops. (At the end of the growth cycle, the
region under consideration is covered by a falling
drop for a finite time which is ignored in the
present analysis.) For water the fraction of
surface area covered by falling drops is, except at
very high condensation rates, small and may be
taken account of separately [30].

The fact that the theory, which does not
involve the vapour-to-surface temperature
difference, vapour pressure and fluid properties
ie. the factors affecting the growth rate of
individual drops, agrees well with measure-
ments, suggests that, for the range of drop sizes
covered by the measurements (5 um radius and
above), the coupling between the distribution
of drop sizes and the heat-transfer parameters
is weak. (For the conditions under which the
measurements [8] were made the radius of the
smallest viable drop is about 0-06 um.)

Finally, it should be noted that the values of
fand y used in the present work are valid only
for drops which are spherical segments having
contact angles less than or equal to =n/2. For
drops having larger contact angles (e.g. mercury)
coalescence occurs before the base radii come
into contact. In the absence of any size distri-
bution data for drops having contact angles
significantly in excess of 7/2 these cases have
not been pursued at present.
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CONDENSATION EN GOUTTES—LA DISTRIBUTION DES TAILLES DES GOUTTES

Résaumé—La nature du processus de croissance des gouttes durant la condensation révélée par des films
cinématographiques avec fort grossissement (16, 18, 29) est prise pour base d’'un modéle simplifié de la
séquence des événements qui se produisent pendant le cycle de croissance (par exemple, Pintervalle de
temps entre les balayages successifs de la région superficielle considérée). Le modéle est utilisé pour
estimer la distribution moyenne dé la taille des gouttes. La distribution théorique est comparée aux
mesures (8, 31), 4 une simulation récente par ordinateur (32) et 4 une distribution empirique antérieure (28).
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TROPFENKONDENSATION-—VERTEILUNG DER TROPFENGROSSE

Zusammenfassmg —Dic Natur des Wachstumsprozesses bei der Tropfenkondensation, die in Filmauf-

nahmen [16, 18, 29] mit starker Vergrosserung sichtbar gemacht ist, wurde als Grundlage fiir ein verein-

fachtes Modell zum Ablauf der Ercignissc wahrend cines Wachstumszyklus (d.h der Zeit zwischen

aufeinanderfolgendem Tropfenablauf auf der betrachtcten Fliche) herangezogen. Das Modell dient zur

Bestimmung der durchschaittlichen Tropfengrossenverteilung. Die theoretische Verteilung wurde mit

Messergebnissen [8, 31}, mit cinem neueren Rechenmodell {32] und mit einem fritheren empirischen
Verteilungsgesetz verglichen [ 28].

KAHNEJbHAA KOHJIEHCALHA. PACIIPEIEAEHHUE PA3BMEPOB RAIIEIb

Ansoranua—MexaRuaM npouecca pocTa Kaueldb MPH KANEALHOIN KOIJCHCAIMN, KOTOpii
MOKHO MPOCJEAMTh HA KHHOILIEHKe TIpH MHOrokparnod yvsemrdennn [16, 18, 29], aer »
OCHORY YTPOIEHHON MOJCIN NOCICAOBATENLHHX ARJCHWIT, NPOHCXOAIMX BO BPEMA MK
pocTa, T.e. MPOMEHYTKA BPEMEHH MEHGLY MOCICIOBATENLHLIMII CMBIBAMH Y4YacTKa pace-
MaTPUBAEMOIi IIOBEPXHOCTH . ITA MO;1eITh HCIOAbIYETCA LTH PACYETA CPEIHErO pacTipeleeus
pasMepon nKanean. Teoperudeckne JAHHBC CPABHHBAITCA € PEIVILTUTAMH  N3MepeHmii
[8, 31], ¢ peayabTaTaMm MOACIMPOBAHMAH HA BLYHCNTeILHON Mannmme [32] m ¢ panee
HOAYYCHHBIMH DM IIpHYecKkuMH jlanunivn [28].
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